Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            We introduce a lattice dynamics package which calculates elastic, thermodynamic and thermal transport properties of crystalline materials from data on their force and potential energy as a function of atomic positions. The data can come from density functional theory (DFT) calculations or classical molecular dynamics runs performed in a supercell. First, the model potential parameters, which are anharmonic force constants are extracted from the latter runs. Then, once the anharmonic model is defined, thermal conductivity and equilibrium properties at finite temperatures can be computed using lattice dynamics, Boltzmann transport theories, and a variational principle respectively. In addition, the software calculates the mechanical properties such as elastic tensor, Gruneisen parameters and the thermal expansion coefficient within the quasi-harmonic approximation (QHA). Phonons, elastic constants and thermodynamic properties results applied to the germanium crystal will be illustrated. Using the force constants as a force field, one may also perform molecular dynamics (MD) simulations in order to investigate the combined effects of anharmonicity and defect scattering beyond perturbation theory.more » « lessFree, publicly-accessible full text available July 1, 2026
- 
            Two-dimensional layered transition metal dichalcogenides are potential thermoelectric candidates with application in on-chip integrated nanoscale cooling and power generation. Here, we report a comprehensive experimental and theoretical study on the in-plane thermoelectric transport properties of thin 2H-MoTe2 flakes prepared in field-effect transistor geometry to enable electrostatic gating and modulation of the electronic properties. The thermoelectric power factor is enhanced by up to 45% using electrostatic modulation. The in-plane thermal conductivity of 9.8 ± 3.7 W m−1 K−1 is measured using the heat diffusion imaging method in a 25 nm thick flake. First-principles calculations are used to obtain the electronic band structure, phonon band dispersion, and electron–phonon scattering rates. The experimental electronic properties are in agreement with theoretical results obtained within energy-dependent relaxation time approximation. The thermal conductivity is evaluated using both the relaxation time approximation and the full iterative solution to the phonon Boltzmann transport equation. This study establishes a framework to quantitively compare first-principle-based calculations with experiments in 2D layered materials.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
